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SUMMARY

Rhizocticins are phosphonate oligopeptide antibi-
otics containing the C-terminal nonproteinogenic
amino acid (Z)-L-2-amino-5-phosphono-3-pentenoic
acid (APPA). Here we report the identification and
characterization of the rhizocticin biosynthetic gene
cluster (rhi) in Bacillus subtilis ATCC6633. Rhizocticin
B was heterologously produced in the nonproducer
strain Bacillus subtilis 168. A biosynthetic pathway
is proposed on the basis of bioinformatics analysis
of the rhi genes. One of the steps during the biosyn-
thesis of APPA is an unusual aldol reaction between
phosphonoacetaldehyde and oxaloacetate cata-
lyzed by an aldolase homolog RhiG. Recombinant
RhiG was prepared, and the product of an in vitro
enzymatic conversion was characterized. Access to
this intermediate allows for biochemical character-
ization of subsequent steps in the pathway.
INTRODUCTION

Rhizocticins are phosphonate-containing oligopeptide antibi-

otics produced by the gram-positive bacterium B. subtilis

ATCC6633. They were originally discovered in 1949 on the basis

of their antifungal activity and were collectively termed ‘‘rhizoc-

tonia factor’’ (Michener and Snell, 1949). The structures of rhi-

zocticins were determined 40 years later (Rapp et al., 1988).

They are di- and tripeptide antibiotics consisting of a variable

amino acid at the N terminus followed by arginine and the

nonproteinogenic amino acid (Z)-L-2-amino-5-phosphono-3-

pentenoic acid (APPA; Figure 1A). Interestingly, APPA is also the

C-terminal amino acid of the tripeptide antibiotics plumbemycin

A and B produced by Streptomyces plumbeus (Figure 1B) (Park

et al., 1977a; Park et al., 1977b).

Rhizocticins enter the target fungal cell through the oligopep-

tide transport system (Kugler et al., 1990). They are then cleaved

by host peptidases to release APPA, which inhibits threonine

synthase, an enzyme catalyzing the pyridoxal 50-phosphate

(PLP)–dependent conversion of phosphohomoserine to
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L-threonine (Figure 1C) (Kugler et al., 1990; Laber et al., 1994).

Hence, APPA interferes with the biosynthesis of threonine and

related metabolic pathways, ultimately affecting protein synthe-

sis and leading to growth inhibition. The inhibitory activity of

APPA is due to the structural resemblance to phosphohomoser-

ine, but it possesses a hydrolytically stable C-P bond in place of

the C-O-P moiety of phosphohomoserine.

Rhizocticins exhibit antifungal activity, whereas plumbemy-

cins are antibacterials. It has been demonstrated that plumbe-

mycins also enter Escherichia coli K-12 via the oligopeptide

transport system (Diddens et al., 1979). As in the case of rhizoc-

ticins, L-threonine reverses the growth inhibition by plumbemy-

cins in a concentration-dependent manner (Park et al., 1977b).

Therefore, similarly to rhizocticins, plumbemycins must be

cleaved by peptidases of the target cell to release the active

substance, APPA. The selectivity of these tripeptide antibiotics

is thus not due to a difference in mode of action, but rather is

determined by the recognition of proteinogenic amino acids

attached at the N terminus of APPA by a specific oligopeptide

transport system or peptidase. This feature can potentially be

exploited to create APPA-containing oligopeptides with specific

selectivity for a particular organism. Furthermore, the target of

APPA, threonine synthase, is not present in mammals, reducing

the likelihood of toxicity to humans. Thus, such phosphonate

oligopeptides can be promising therapeutics.

Phosphonate compounds are prevalent among biologically

active molecules, mainly because of their ability to function as

stable mimics of carboxylate and phosphate-containing metab-

olites. At present, biosynthetic pathways of only a handful of

phosphonates have been extensively studied (see Metcalf and

van der Donk, 2009 for a recent comprehensive review on the

topic), including fosfomycin (Hidaka et al., 1995; Woodyer

et al., 2006), dehydrophos (B. T. Circello and W.W.M., unpub-

lished data), FR-900098 (Eliot et al., 2008), and phosphinothri-

cin-containing peptides (e.g., PTT) (Blodgett et al., 2007)

(Figure 1D). These studies have shown that the biosyntheses

of this class of compounds provide a rich source of novel

biochemistry as exemplified by many unique enzymatic transfor-

mations (Cicchillo et al., 2009; Higgins et al., 2005). Therefore,

a better understanding of the rhizocticin pathway will be of great

interest. Furthermore, biosynthetic access to the APPA warhead

of the rhizocticins would be advantageous because organic
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Figure 1. Chemical Structures of the Phosphonate Antibiotics

(A) Chemical structure of rhizocticins.

(B) Chemical structure of plumbemycins.

(C) The threonine synthase reaction inhibited by APPA.

(D) Chemical structures of representative phosphonate antibiotics whose

biosynthetic pathways have been studied.
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Figure 2. Organization of the Rhizocticin Gene Cluster and
Surrounding Genes on the B. subtilis ATCC6633 Chromosome

The same locus of B. subtilis 168 genome is also shown for comparison. Genes

with a high degree of homology between the two strains (>90% identity) are

shown in yellow. The biosynthetic clusters for rhizocticin and sporulation killing

factor are shown in blue and green, respectively. The corresponding location

of these loci in the other genome is denoted with a star of the same color.
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synthesis of this molecule is very challenging. For instance,

biosynthetic preparation of APPA would provide an avenue to

combinatorially vary the N-terminal amino acids to create

analogs with desired specificity.

To this end, we identified the rhizocticin biosynthetic cluster in

the genome of B. subtilis ATCC6633 and confirmed its identity by

heterologous expression in B. subtilis 168. Although the first two

steps of the biosynthetic pathway appear to be the same as for

other phosphonate metabolites, the third step—an aldol reaction

between phosphonoacetaldehyde (PnAA) and oxaloacetic acid

(OAA)—is unprecedented. Biochemical characterization of this

step is also reported here. On the basis of genetic and biochem-

ical information, a pathway for the biosynthesis of rhizocticins is

proposed.

RESULTS AND DISCUSSION

Identification of the Rhizocticin Biosynthetic Gene
Cluster
The first step in the biosynthetic pathways of the majority of

phosphonates is the isomerization of phosphoenolpyruvate

(PEP) to phosphonopyruvate (PnPy) catalyzed by phosphoenol-

pyruvate phosphomutase (PEP mutase) (Seidel et al., 1988).

Previously, we successfully identified phosphonate biosynthetic

gene clusters by screening fosmid libraries with degenerate PCR

primers designed to amplify PEP mutase-encoding genes

(Blodgett et al., 2005; Eliot et al., 2008). We attempted a similar

approach here to identify the rhizocticin gene cluster. A fosmid

library of B. subtilis ATCC6633 was constructed and screened

by PCR for a PEP mutase gene fragment as described in the

Supplemental Information available online. However, none of
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the clones produced the desired PCR fragment, possibly

because of a highly divergent sequence of the PEP mutase

gene, which prevented annealing of the primers. Alternatively, a

PEP mutase–independent pathway might be used by B. subtilis

ATCC6633 for production of rhizocticin.

To investigate these alternatives, the genome of B. subtilis

ATCC6633 was sequenced using the 454 sequencing platform.

The details of the genome sequencing will be reported else-

where. Briefly, sequencing data were assembled into 37 contigs

spanning approximately 4.0 Mb. A total of 3769 open reading

frames (ORFs) were determined and annotated using the RAST

Server (Rapid Annotations using Subsystems Technology)

(Aziz et al., 2008). For comparison, the closely related B. subtilis

168 strain has a genome of 4.2 Mb comprising 4114 coding

sequences (Kunst et al., 1997). When searched for the PEP

mutase gene, the sequence of the genome of B. subtilis

ATCC6633 produced a single hit. This gene appears to be

a part of an operon consisting of 13 ORFs and is preceded by

a differentially transcribed additional ORF encoding a transcrip-

tional regulator. Careful analysis of the ORFs comprising this

operon led to the conclusion that these genes are likely to consti-

tute a rhizocticin biosynthetic gene cluster (Figure 2).

With the genome sequence available, the fosmid library of

B. subtilis ATCC6633 was screened as described above using

two sets of sequence-specific primers designed to amplify

short sequences upstream of the putative rhizocticin cluster

(within orf6) and within rhiM. Fosmid 2-11E was identified and

sequenced via the Sanger protocol using transposon insertions,

as described elsewhere (Blodgett et al., 2005; Eliot et al., 2008).

The sequence of the insert of 2-11E originating from B. subtilis

ATCC6633 DNA was identical to that of the corresponding frag-

ment obtained through 454 sequencing of the genome, with the

exception of a single base-pair mismatch located outside of the

putative rhizocticin gene cluster.

B. subtilis ATCC6633 possesses a high degree of nucleotide

sequence homology to B. subtilis 168. The putative rhizocticin

gene cluster appears to be a single site insertion of approxi-

mately 13 kb into the genome of B. subtilis 168. Although the

genes of the rhizocticin cluster have no homologs within the

B. subtilis 168 genome, the nucleotide sequences outside of

the cluster are approximately 90% identical. Interestingly,

B. subtilis 168 contains a gene cluster (skf) located near the

‘‘insertion site’’ of the rhizocticin gene cluster (blue star in
28–37, January 29, 2010 ª2010 Elsevier Ltd All rights reserved 29



Table 1. Summary of the Open Reading Frames of the Rhizocticin Gene Cluster

ORF No. of aa Protein homology (NCBI No.)

Percentage

of aa identitya

orf6 325 B. subtilis 168 putative hydrolase/transferase (CAB11993) (325 aa) 94

orf7 223 B. subtilis 168 two-component response regulator YbdJ (BAA33098) (223 aa) 95

orf8 322 B. subtilis 168 sensor histidine kinase YbdK (BAA33099) (320 aa) 87

rhiA 296 B. licheniformis transcriptional activator of the cysJI operon (AAU21843) (298 aa) 65

Salmonella enterica Typhimurium transcriptional regulator CysB (NP_460672) (324 aa) 18

rhiB 433 Sphaerobacter thermophilus threonine synthase (ZP_04494878) (420 aa) 46

Mycobacterium tuberculosis threonine synthase (2D1F_B) (360 aa) 28

B. subtilis ATCC6633 threonine synthase ThrC (this study) (352 aa) 27

rhiC 408 B. licheniformis hypothetical protein, related to NikS (YP_077482) (405 aa) 62

Streptomyces ansochromogenes nikkomycin biosynthesis protein SanS, D-Ala-D-Ala ligase homolog

(AAK53061) (424 aa)

30

rhiD 407 B. licheniformis MFS transporter (YP_077483) (408 aa) 68

rhiE 167 Sorangium cellulosum sulfopyruvate decarboxylase a-subunit (YP_001617955) (170 aa) 40

rhiF 186 S. hygroscopicus phosphonopyruvate decarboxylase (Q54271) (401 aa) 40

rhiG 337 Legionella pneumophila 4-hydroxy-2-oxovalerate aldolase (YP_096686) (295 aa) 34

Pseudomonas sp. bifunctional aldolase-dehydrogenase DmpG (1NVM_A) (345 aa) 25

rhiH 296 Paenibacillus larvae putative PEP phosphomutase (ZP_02329666) (297 aa) 56

S. viridochromogenes PEP phosphomutase of PTT biosynthesis (AAU00071) (313 aa) 42

rhiI 362 Pseudomonas syringae hypothetical protein (BAF32889) (354 aa) 36

Mycoplasma pneumonia HPr kinase/phosphatase (1KNX_A) (312 aa) 14

rhiN 132 Chloroherpeton thalassium protein of unknown function UPF0047 (YP_001997537) (138 aa) 35

E. coli conserved hypothetical protein YjbQ (ZP_03048862) (138 aa) 22

rhiJ 393 Thermotoga lettingae aminotransferase class V (YP_001471385) (381 aa) 42

Methanocaldococcus jannaschii broad-specificity class V aspartate aminotransferase (NP_247954) (385 aa) 38

rhiK 85 Natronomonas pharaonis glutaredoxin (CAI48716) (82 aa) 35

E. coli glutaredoxin 3 (1FOV_A) (82 aa) 23

rhiL 215 Frankia sp. EAN1pec putative metallophosphoesterase (YP_001510901) (243 aa) 32

E. coli metal-dependent phosphodiesterase YfcE (P67095) (184 aa) 19

rhiM 413 B. licheniformis hypothetical, related to NikS (YP_077482) (405 aa) 25

S. ansochromogenes nikkomycin biosynthesis protein SanS, D-Ala-D-Ala ligase homolog (AAK53061) (424 aa) 26

orf9 256 B. subtilis 168 putative serine/threonine protein kinase YbdM (O31435) (256 aa) 90

orf10 284 B. subtilis 168 putative phage protein YbdN (CAB11998) (285 aa) 94

orf11 394 B. subtilis 168 putative phage protein YbdO (CAB11999) (394 aa) 89

Note: aa, amino acid.
a The closest homologs were based on NCBI searches conducted October 8, 2009. The homolog whose biochemical function was experimentally

supported is shown for proteins of particular interest.
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Figure 2). This gene cluster is absent from B. subtilis ATCC6633

(its corresponding location is shown as a green star). The skf

gene cluster is responsible for the biosynthesis and export of

and the immunity to sporulation killing factor. This peptide

antibiotic produced by sporulating B. subtilis 168 causes lysis

of nonsporulating sibling B. subtilis 168 cells (Gonzalez-Pastor

et al., 2003). Thus, the rhi and skf gene clusters occupy essen-

tially the same locus on the genomic DNA of related species,

as commonly seen for the genes involved in secondary

metabolism.

Bioinformatic Analysis of the rhi Cluster
The genes of the rhizocticin biosynthetic cluster were first anno-

tated using the RAST Server (Aziz et al., 2008) and further
30 Chemistry & Biology 17, 28–37, January 29, 2010 ª2010 Elsevier
analyzed with the Basic Local Alignment Search Tool (BLAST)

program at NCBI (Altschul et al., 1990) and the Phyre server

(Kelley and Sternberg, 2009). The gene annotations, along with

the closest and functionally confirmed homologs, are shown in

Table 1.

As mentioned above, the genes surrounding the putative rhi-

zocticin gene cluster (rhiA-rhiM; e.g., immediately adjacent

orf6-8 and orf9-11) have nearly identical counterparts in B. sub-

tilis 168. Therefore, they are not likely to be involved in rhizocticin

biosynthesis.

The rhiA gene encodes a putative transcriptional regulator of

the LysR family (Schell, 1993). The helix-turn-helix DNA-binding

motif, typical of many LysR regulators (Maddocks and Oyston,

2008), is predicted by the Phyre server to be located within the
Ltd All rights reserved
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N-terminal residues 30–85. A putative ligand-binding domain is

also present at the C terminus of RhiA. The rhiA gene is located

upstream and in the opposite direction of the other genes in the

rhi operon, as commonly seen for LysR-regulated operons (Mad-

docks and Oyston, 2008).

The rhiB gene encodes a putative threonine synthase. Inter-

estingly, the genome of B. subtilis ATCC6633 contains another

copy of a threonine synthase gene, thrC, located in an operon

with genes involved in the biosynthesis of threonine that is

present at the same site as the threonine synthase gene in the

B. subtilis 168 genome. Unlike RhiB, ThrC is highly homologous

to threonine synthases of gram-positive bacteria, predominantly

Bacillus species (98% identical to threonine synthase of B. sub-

tilis 168), suggesting ThrC is a bona fide threonine synthase

involved in primary metabolism. RhiB and ThrC appear to be

evolutionary distinct because they share only 27% amino acid

identity. It is conceivable that rhiB is involved in rhizocticin self-

resistance by encoding a threonine synthase homolog that is

not inhibited by APPA.

The translated products of rhiC and rhiM are homologs (26%

identity). The proteins with the closest homology are NikS and

SanS, participating in the biosynthesis of the peptidyl nucleoside

antibiotic nikkomycin (Lauer et al., 2001; Li et al., 2004). They

belong to the carboxylate-amine/thiol ligase superfamily of

enzymes possessing a signature ATP-grasp structural motif

(Galperin and Koonin, 1997). The enzymes of this superfamily

catalyze the ATP-dependent formation of peptide or thioester

bonds via a reactive acylphosphate intermediate. Examples

include D-Ala-D-Ala ligase of peptidoglycan biosynthesis (Fan

et al., 1994; Zawadzke et al., 1991), glutathione synthetase

(Fan et al., 1995; Yamaguchi et al., 1993), and biotin carboxylase

(Artymiuk et al., 1996; Waldrop et al., 1994). Despite a variety of

reactions catalyzed by the members of the ATP-grasp super-

family, enzymes catalyzing the formation of a ‘‘conventional’’

proteinogenic a-peptide bond between L-amino acids have

been identified only recently (Kino et al., 2009; Kino et al.,

2008a; Kino et al., 2008b; Tabata et al., 2005). During the course

of our study, the identification and substrate specificity of RhiM

was reported (named RizA by the authors) (Kino et al., 2009).

RhiM (RizA) is capable of ligating L-arginine to 19 other amino

acids, including a saturated analog of L-APPA, 2-amino-5-

phosphonopentanoic acid (Kino et al., 2009). A sequence of

RhiC has also been deposited into GenBank (accession number

BAH56723) by Kino and co-workers; its activity has not been

reported.

RhiD is a putative transporter of the major facilitator super-

family (MFS). Between 8 and 10 transmembrane helixes are pre-

dicted by different topology prediction tools (http://ca.expasy.

org). RhiD is likely responsible for the export of rhizocticins

from the cell.

The genes rhiE and rhiF encode two subunits of a putative

PnPy decarboxylase. PnPy decarboxylases catalyze the irre-

versible thiamin pyrophosphate (TPP)–dependent decarboxyl-

ation of PnPy to PnAA. This step is present in the majority of

biosynthetic pathways of known phosphonates, including fosfo-

mycin and phosphinothricin tripeptide (Metcalf and van der

Donk, 2009). Unlike RhiE/RhiF, these enzymes usually consist

of a single polypeptide chain. On the other hand, the functionally

similar sulfopyruvate decarboxylase of coenzyme M biosyn-
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thesis is usually a two-subunit enzyme (e.g., ComD and ComE

in Methanococcus jannaschii) (Graupner et al., 2000). ComD

(a-subunit) is homologous to the N-terminal portion of single

chain PnPy decarboxylases, whereas ComE (b-subunit) has

homology to the C terminus. In a similar manner, RhiE and

RhiF are homologs of the a- and b-subunits of sulfopyruvate

decarboxylase, respectively, and the N- and C-terminal portions

of single chain PnPy decarboxylases. RhiF (like ComE) contains

a canonical TPP-binding motif. To the extent of our knowledge,

RhiE/RhiF is the first example of a PnPy decarboxylase consist-

ing of two subunits.

A search of the NCBI database for protein sequences homol-

ogous to the translated product of rhiG yielded a number of puta-

tive 4-hydroxy-2-oxovalerate aldolases with modest homology

to RhiG (identity of 35% and lower). The closest homologs

of RhiG that have been biochemically characterized are the

4-hydroxy-2-oxovalerate aldolases NahM and DmpG (25%

identity) of Pseudomonas putida strains (Manjasetty et al.,

2003; Platt et al., 1995). They belong to the class II family of aldol-

ases that are dependent on divalent metal ions for catalysis.

DmpG (and NahM) catalyzes the penultimate step of the meta-

cleavage pathway from catechol to pyruvate and acetyl-CoA

during the catabolism of aromatic compounds by Pseudomonas

strains. DmpG is a part of a bifunctional enzyme complex

because it physically associates with the enzyme of the following

step, acetaldehyde dehydrogenase (acylating) DmpF, to ensure

efficient transfer of the reactive intermediate acetaldehyde

(Figure S1).

The rhiH gene encodes a putative PEP mutase that presum-

ably would catalyze the first step in the biosynthetic pathway,

the conversion of PEP to PnPy.

The translated product of rhiI has no significant end-to-end

homology to any of the entries in the NCBI database. However,

the C terminus of RhiI (approximately 213 amino acids) shows

low homology to the C-terminal domain of the histidine-contain-

ing phospho carrier protein (HPr) kinase/phosphorylase from

several species. In low GC gram-positive bacteria, HPr is

involved in the regulation of carbon catabolism (Martin-Ver-

straete et al., 1999). HPr kinase/phosphorylase is a bifunctional

protein that modifies Ser-46 of HPr and accepts ATP or

pyrophosphate (PPi) as a phosphate group donor. RhiI contains

an easily identifiable canonical nucleotide binding P loop

(GSKGKGKS). It is conceivable that RhiI catalyzes an ATP-

dependent phosphorylation of a small molecule or plays a regu-

latory role similar to HPr kinase/phosphorylase.

The translated gene product of rhiN shows homology to

a number of hypothetical proteins belonging to an uncharacter-

ized protein family UPF0047 (ExPASy, Prosite). The members of

this family are small proteins of 14–16 kDa and are widely distrib-

uted among the three domains of life. Although several crystal

structures were solved (submitted to the Protein Data Bank but

not published) for the UPF0047 family, no function has been

established for any of thehomologs.Oneof the UPF0047 proteins,

YjbQ of E. coli, has a low promiscuous activity as thiamine phos-

phate synthase (Morett et al., 2008), catalyzing the coupling of the

thiazole and pyrimidine portions of thiamine phosphate via

a nucleophilic substitution reaction proceeding through a carbo-

cation intermediate (Peapus et al., 2001). However, the biological

function of YjbQ and its homologs remains to be elucidated.
28–37, January 29, 2010 ª2010 Elsevier Ltd All rights reserved 31
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The gene rhiJ encodes a putative aminotransferase belonging

to a family of Fold Type I PLP-dependent enzymes (Eliot and

Kirsch, 2004). It can be further classified into phylogenetic class

V of aminotransferases (also referred to as subgroup IV) (Mehta

et al., 1993). One of the closest homologs (38% identical) of

RhiJ, MJ0959 of Methanocaldococcus jannaschii, displayed

the highest specific activity for transamination of aspartate and

a-ketoglutarate when assayed in vitro (Helgadottir et al., 2007).

However, MJ0959 is thought to be a part of L-phosphoserine

biosynthesis, converting phosphohydroxypyruvate to L-phos-

phoserine (Helgadottir et al., 2007).

BLAST analysis revealed that RhiK is a homolog of glutaredox-

ins, small proteins related to thioredoxins and involved in the

maintenance of the reducing environment of the cytoplasm.

RhiK contains a CPYC motif conserved among glutaredoxins

and is predicted to have a typical bababba thioredoxin fold

(Pan and Bardwell, 2006). RhiK also shows homology to the

N-terminal domain of glutathione S-transferase, another

member of the thioredoxin-like superfamily.

The translated sequence of rhiL belongs to the calcineurin-like

superfamily (PF00149) that includes metal-dependent phospho-

monoesterases and phosphodiesterases catalyzing the hydro-

lysis of diverse substrates, from phosphorylated proteins to

nucleic acids (Koonin, 1994). Several conserved amino acid resi-

dues are present in RhiL, most notably all those comprising the

binuclear metal center, suggesting it may have a phosphodies-

terase activity as well.

Heterologous Production of Rhizocticin B
To confirm that the identified gene cluster is responsible for the

biosynthesis of rhizocticins in B. subtilis ATCC6633, we intro-

duced the rhi cluster in the B. subtilis 168 genome through

homologous recombination (see the Experimental Procedures

and Figure S2 for details). To do this, a spectinomycin resistance

cassette (Spec) was introduced into fosmid 2-11E downstream

of the rhi cluster using l Red recombinase-mediated recombina-

tion (Datsenko and Wanner, 2000). The resulting fosmid

2-11E+Spec was linearized by restriction digestion and used

for the transformation of B. subtilis 168. We anticipated that

the level of homology between the DNA sequence immediately

outside of the rhi cluster in B. subtilis ATCC6633 and the corre-

sponding sequence of B. subtilis 168 (over 90% identity on the

nucleotide level) was sufficiently high for the homologous recom-

bination to occur. This proved correct, because the recombinant

B. subtilis 168 colonies selected on spectinomycin-containing

medium contained the rhi cluster, as verified by PCR amplifica-

tion of rhiC and rhiM genes.

One of the recombinant strains, B. subtilis MMG272, was

grown for the production of rhizocticins, and its clarified spent

medium was partially purified and fractionated as described in

Experimental Procedures. Samples were analyzed by phos-

phorus (31P) NMR spectroscopy for the presence of phospho-

nates. One of the fractions produced a major phosphonate

peak with a characteristic chemical shift (d) of 20.7 ppm in the
31P NMR spectrum (Figure 3A). Addition of purified rhizocticin

B to the sample resulted in an increase in intensity of the

20.7 ppm peak and no new peaks in the 31P NMR spectrum

(Figure 3A), suggesting that the major phosphonate product is

rhizocticin B. Analysis of the sample by liquid chromatography-
32 Chemistry & Biology 17, 28–37, January 29, 2010 ª2010 Elsevier
mass spectrometry (LC-MS) further supported the presence of

rhizocticin B (see Figure 3B and Experimental Procedures for

details). No phosphonates were produced in a control experi-

ment with the parent B. subtilis 168 strain (data not shown).

Taken together, these results confirm that B. subtilis MMG272

produces rhizocticin B and that the rhi gene cluster is respon-

sible for its biosynthesis.

Proposed Rhizocticin Biosynthetic Pathway
On the basis of the amino acid sequence homology of Rhi

proteins to enzymes with known activities and previous knowl-

edge of phosphonate biosynthetic pathways, a proposed

biosynthetic pathway for rhizocticins is shown in Figure 4. First,

PEP is converted to PnPy by the action of the PEP mutase

RhiH. PnPy then undergoes decarboxylation catalyzed by

PnPy decarboxylase RhiE/RhiF to yield PnAA. These steps

are common to the vast majority of known phosphonate

antibiotic biosyntheses (Metcalf and van der Donk, 2009).

The subsequent step is a novel transformation, an aldol

reaction between PnAA and pyruvate (Py) catalyzed by the

aldolase homolog RhiG. An alternative possibility is that the

enolate of pyruvate is generated by decarboxylation of OAA

(see below).

A minimum of two steps, dehydration and aminotransfer, are

required to convert the putative RhiG product I to APPA. The

aminotransferase RhiJ is likely responsible for the introduction

of the amino group at C-2. It is less obvious how dehydration

happens. It is possible that the aminotransferase RhiJ is also

capable of catalyzing a PLP-dependent g-elimination of water

in tandem with aminotransfer, single-handedly converting I to

APPA. Another possibility is activation of the hydroxyl leaving

group via phosphorylation by the action of the kinase homolog

RhiI. Elimination could then be achieved by a yet unknown

activity of RhiI (e.g., via acid-base catalysis) or by the action of

RhiJ. Alternatively, RhiG could be responsible for aldol addition

followed by dehydration. Regardless of the order in which dehy-

dration and aminotransfer happen (path ‘‘a’’ versus ‘‘b’’), the

APPA product can then be decorated at its N terminus with

Arg and Val (or Leu/Ile) by the action of carboxylate-amine

ligases. Two of these proteins, RhiC and RhiM, are encoded by

the rhi cluster, suggesting that each of the peptide bonds is

formed by the action of a dedicated ligase.

The timing of dehydration could also be later in the pathway.

Namely, once intermediate I is converted by RhiJ to amino

acid III, III may be incorporated by RhiC and RhiM into di- or

tripeptide precursors IV of rhizocticins. In this case, the dehydra-

tion would commence on a peptide intermediate IV. In this

scenario, no a-amino group would be available for RhiJ-

catalyzed PLP-dependent chemistry and at least one another

enzyme must be involved. This path (‘‘c’’) is particularly

appealing because it avoids the presence of toxic APPA as an

intermediate.

The functions of the proteins RhiK, RhiL, and RhiN are unclear.

Although unusual for secondary metabolite biosynthesis, the

glutaredoxin homolog RhiK may be involved in maintaining

a reduced active state for specific proteins of the pathway, and

RhiL or RhiN or both may be involved in a dehydration sequence.

Further studies are needed to clarify the functions of these

proteins.
Ltd All rights reserved
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Figure 3. Analysis of rhizocticin B Production

by B. subtilis MMG272

(A) 31P NMR spectra of partially purified spent medium

of B. subtilis MMG272 and of the same sample supple-

mented with rhizocticin B authentic standard. The

concentrations of components in the sample B. subtilis

MMG272 + rhizocticin B are the same as in the indi-

vidual sample of B. subtilis MMG272. Both spectra

were collected for 400 transients and adjusted to the

same absolute vertical scale.

(B) LC-MS analysis of partially purified spent medium

of B. subtilis MMG272. The fragmentation of the rhi-

zocticin B parent ion is shown, and the peaks corre-

sponding to the characteristic fragments are labeled.
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Catalytic Activity of the PEP Mutase RhiH
The rhiH gene encoding putative PEP mutase was expressed in

E. coli as a fusion protein with an N-terminal hexahistidine tag.

Recombinant RhiH-N-His was purified to near homogeneity

using metal affinity chromatography. The reversible reaction

catalyzed by PEP mutase favors the formation of PEP (Seidel

et al., 1988; Bowman et al., 1988). Subsequent decarboxylation

of PnPy to PnAA catalyzed by PnPy decarboxylase provides the

necessary driving force in many phosphonate pathways. There-

fore, the enzymatic activity of RhiH-N-His was tested using

a coupled assay with PnPy decarboxylase from Bacteroides fra-

gilis (Zhang et al., 2003b) prepared as a C-terminally His-tagged

protein (Ppd-Bf-His).

Assay conditions were based on published procedures (Zhang

et al., 2003a; Blodgett et al., 2007) and are described in detail in

the Supplemental Information. Briefly, the assay mixture con-

taining PEP, catalytic TPP cofactor, and Mg2+ was incubated
Chemistry & Biology 17, 28–37, January 29,
with RhiH-N-His and Ppd-Bf-His. The ex-

tent of the reaction was analyzed using 31P

NMR spectroscopy. Upon incubation, PEP

(�0.2 ppm) was converted to PnAA, as dem-

onstrated by the appearance of a new peak

at 9.9 ppm in the 31P NMR spectrum, consis-

tent with the reported value (Blodgett et al.,

2007). Upon prolonged storage, PnAA

undergoes a nonenzymatic degradation, as

attested by the appearance of a broad peak

at 15.4 ppm in the 31P NMR spectrum con-

sistent with previously reported behavior

(Zhang et al., 2003a).

RhiH-N-His, together with Ppd-Bf-His,

were used for the enzymatic preparation of

PnAA. Because of the labile nature of PnAA,

the enzyme-free reaction mixture was

used as a source of PnAA without further

purification.

Investigation of RhiG Catalytic Activity
To obtain additional support for the biosyn-

thetic proposal depicted in Figure 4, we set

out to experimentally confirm the function

of RhiG. Obtaining the product of RhiG via

an enzymatic reaction would also provide
the substrate for biochemical investigation of subsequent

biosynthetic steps. RhiG was purified as a C-terminal fusion with

a hexahistidine tag, RhiG-C-His (molecular weight, 38.7 kDa),

using metal affinity chromatography. The purified protein con-

tained no chromophore as attested by a UV-vis spectrum trans-

parent above 300 nm. Native RhiG-C-His appears to be a

homodimer (native molecular weight, 75 kDa) as determined by

size-exclusion chromatography.

As seen for other class II aldolases, we expected that the

activity of RhiG is dependent on a divalent metal cation, most

likely Mg2+ or Mn2+. Because the PnAA solution prepared with

RhiH-N-His and Ppd-Bf-His already contains Mg2+, no additional

metals were supplied to the reaction. Incubation of a PnAA

solution with pyruvate and RhiG-C-His did not produce new

phosphonate compounds when examined by 31P NMR spec-

troscopy. We then evaluated OAA as substrate for the aldol

reaction with PnAA. Indeed, incubation of PnAA with OAA and
2010 ª2010 Elsevier Ltd All rights reserved 33
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RhiG-C-His resulted in the formation of a new compound,

denoted Ia, as demonstrated by the appearance of a new peak

(19.8 ppm) in the 31P NMR spectrum (Figure 5B). Approximately

80% of the PnAA was converted to Ia, as estimated by integra-

tion of the 31P NMR signals. The product Ia was observed only

when OAA and RhiG-C-His were both added to the assay. No

new phosphonates were detected when 2-ketoglutaric acid

was used in place of OAA. Interestingly, upon storage of the

enzyme-free assay mixture, a slow conversion occurred of the

phosphonate Ia to another phosphonate-containing compound

(15.8 ppm), denoted Ib. Degradation of Ia and its highly polar

nature complicated its purification by HPLC. Therefore, the

structures of compounds Ia and Ib were determined using spec-

troscopic analyses of a crude assay mixture.

A comprehensive NMR analysis of the RhiG-C-His reaction

mixtures prepared with unlabeled and 13C-labeled PEP and

OAA substrates (Supplemental Information and Figures S3 and
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S4) allowed for the unequivocal assignment of the structures

Ia and Ib (Figure 5A). The structure of Ia was further supported

by LC-MS analysis (Supplemental Information and Figure S5).

The trans configuration of the double bond in Ib, and not a cis

double bond as seen in APPA, suggests nonenzymatic formation

of Ib with anti-elimination of water from Ia resulting in a trans-

isomer. Therefore, the involvement of a specific enzyme (other

than RhiG) is necessary for the dehydration during rhizocticin

biosynthesis.

RhiG-C-His also catalyzes the formation of pyruvate from OAA

in the absence of PnAA. This conversion was complete after

incubation with RhiG-C-His at room temperature for 15 min,

whereas only 13% of OAA was converted to pyruvate in the

absence of enzyme (Supplemental Information).

Summary of the RhiG Reaction
RhiG catalyzes the formation of 2-keto-4-hydroxy-5-phospho-

nopentanoic acid from PnAA and OAA. Carbon dioxide is

presumably a second product of this reaction. The requirement

for divalent metal cation was not investigated at this point but

is assumed on the basis of the studies of known class II aldol-

ases. Clearly, if required, Mg2+ present in the assay was suffi-

cient for successful conversion to I. OAA serves as a surrogate

of pyruvate, and the corresponding three-carbon moiety is incor-

porated into the final product. We propose that OAA coordinates

to a divalent metal cation (Mg2+ in our assay) via its 1-carboxylate

and 2-ketone moieties and undergoes decarboxylation to

produce the enolate form of pyruvate. The enolate is stabilized

by the divalent cation acting as an electron sink. Subsequent

attack of the enolate on the electrophilic carbonyl moiety of

PnAA furnishes the carbon-carbon bond of I (Figure 6A).

The proposed RhiG mechanism draws from the homology of

RhiG to 4-hydroxy-2-oxovalerate aldolase DmpG. Particularly,

the residues comprising Mn2+ ligands in DmpG are also

conserved in RhiG (Figure 6B) (Manjasetty et al., 2003). A crystal

structure of DmpG contains either pyruvate (a product) or

oxalate (a structural analog of pyruvate enolate) as an equatorial

bidentate ligand to Mn2+ (Manjasetty et al., 2003). An analogous

position could be occupied by OAA in RhiG as depicted in

Figure 6A.
O-

-

Figure 5. Reaction Catalyzed by RhiG-C-His

(A) Chemical reaction equation for the RhiG-C-His catalyzed process.

(B) 31P NMR spectrum of the RhiG-C-His assay with unlabeled

substrates.

Ltd All rights reserved



A

B
RhiG  (7) DCTLRDGGN   (189) VGFHGHNNLGL

DmpG (13) DVTLRDGSH   (197) VGMHAHHNLSL

Figure 6. Proposed Mechanism for the RhiG-Catalyzed

Transformation

Amino acid residues coordinating the divalent metal cation

(panel A, RhiG numbering, W denotes water) are based on the

alignment with the homolog DmpG shown in panel B (con-

served residues are in bold, ligands to M2+ are labeled with

arrows).
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The first step in this mechanistic proposal, decarboxylation of

OAA, is analogous to that catalyzed by macrophomate synthase

from the fungus Macrophoma commelinae (Watanabe et al.,

2000), (Ose et al., 2003). The pyruvate enolate generated by

macrophomate synthase is stabilized by coordination to Mg2+

and carries out either a Diels-Alder or Michael-type aldol reac-

tion, the specifics still being a matter of debate. Macrophomate

synthase was recently reported to also possess promiscuous

aldolase activity catalyzing an aldol reaction of OAA with alde-

hydes, analogous to the RhiG transformation (Serafimov et al.,

2008). Interestingly, the amino acid sequence of RhiG has no

homology to that of macrophomate synthase.

SIGNIFICANCE

Despite the demonstrated utility of phosphonates as thera-

peutics and agricultural chemicals, our knowledge of phos-

phonate biosynthetic pathways remains limited to a handful

of examples (Metcalf and van der Donk, 2009). We report

here the identification of the gene cluster responsible for

the biosynthesis of rhizocticins in B. subtilis ATCC6633

and biochemical characterization of early transformations

in the biosynthetic pathway. In addition to gaining valuable

insight into the details of phosphonate biosynthesis, access

to the pathway intermediate allows further investigation of

the subsequent steps in the pathway and ultimately may

provide a source of biologically active APPA or APPA-

containing peptides.

The majority of currently known phosphonate biosyn-

thetic pathways share PnAA as a common intermediate

(Metcalf and van der Donk, 2009). The metabolic fate of

PnAA is either transamination or reduction. Transamination

produces 2-aminoethylphosphonate (AEP), which is incor-

porated into a variety of structural macromolecules, such

as lipids and polysaccharides. Reduction, on the other

hand, generates 2-hydroxyethylphosphonate (HEP) and

leads to antibiotics such as fosfomycin, PTT, and dehydro-

phos. In this work, we discovered a third route by which

phosphonate natural products are made from PnAA—

through an aldol reaction with oxaloacetate. This type of

transformation may prove to be a gateway to greater diver-

sity of natural phosphonate compounds.

EXPERIMENTAL PROCEDURES

Materials

Chemical reagents used in this study were the products of Sigma-Aldrich

(St. Louis, MO) or Thermo Fisher Scientific (Pittsburgh, PA) and were used
Chemistry & Biology 17,
without further purification. 13C-labeled phosphoenolpyruvic acid potassium

salt and aspartate were from Isotec of Sigma-Aldrich group. Media

components were purchased from Thermo Fisher Scientific or VWR (West

Chester, PA). Bacterial strains and PCR primers are listed in Tables S1 and

S2, respectively.

Preparation of Rhizocticin Heterologous Producer B. subtilis

MMG272

The spectinomycin cassette was incorporated into 2-11E fosmid (Supple-

mental Information) using l Red mediated recombination (Datsenko and

Wanner, 2000) with modifications as described below. A spectinomycin resis-

tance cassette was amplified by PCR with primers Spec-red-fwd2 and Spec-

red-rev2 using pAIN750 as a template. The primers were designed to contain

51 bp regions of homology to the sequences flanking the site of Spec insertion

in fosmid 2-11E. The PCR product (Spec fragment, 1247 nt) was digested with

DpnI and purified from an agarose gel. Electrocompetent E. coli MMG194 was

transformed with pKD46, plated on LB agar containing 12 mg/mL chloram-

phenicol (Cm) and 100 mg/mL ampicillin (Amp), and grown at 30�C overnight.

One of the transformants was picked and grown overnight at 30�C in LB-Cm,

Amp. The culture was then diluted 100-fold into SOB medium containing Cm,

Amp, and 2 mM arabinose (to induce l recombinase) and grown to OD600�0.6

at 30�C. The cells were made electrocompetent by extensive washing with ice-

cold 10% glycerol and were concentrated 100-fold. These cells (50 ml aliquot)

were transformed with the PCR fragment (35 ng) via electroporation, recov-

ered in SOC medium at 37�C for 2 hr, and plated on LB agar containing

7 mg/mL Cm and 100 mg/mL spectinomycin (Spec). Several colonies were

inoculated into LB-Cm, Spec and grown overnight at 37�C. The fosmid DNA

was isolated using QIAprep kit and analyzed by PCR amplification of the

rhiC, rhiM genes and Spec fragment. The amplification of the DNA fragments

of the desired size confirmed the incorporation of Spec into 2-11E and forma-

tion of fosmid 2-11E+Spec.

The fosmid DNA 2-11E+Spec was used to transform E. coli WM4489 to yield

E. coli MMG273 strain. This strain was grown in the presence of 10 mM rham-

nose to induce a high copy number for the fosmid 2-11E+Spec, and the fosmid

DNA was reisolated. The 2-11E+Spec DNA was digested by restriction endo-

nuclease NotI, purified by ethanol precipitation, and used to transform B. sub-

tilis 168 following a published protocol (Henner, 1990). Recombinants were

selected on LB agar plates containing 100 mg/mL Spec. The recombination

was confirmed by culture PCR of selected recombinant strains as described

above for verification of the fosmid 2-11E+Spec. One of the strains, B. subtilis

MMG272, was chosen for rhizocticin production analysis as described below.

Rhizocticin B Production in B. subtilis MMG272 and Analysis

by 31P NMR Spectroscopy and LC-MS

The heterologous producer B. subtilis MMG272 was grown for metabolite

production, as described for B. subtilis ATCC6633 (Supplemental Information),

with several exceptions. Spectinomycin was added to all of the media at

100 mg/mL. Additionally, PL medium was supplemented with tryptophan at

50 mg/mL, and the fermentation culture volume was 2 L. The cell-free superna-

tant was taken through the same purification steps through Biogel P2 fraction-

ation as described for rhizocoticin purification (Supplemental Information). The

P2 fractions corresponding to the rhizocticin B elution volume were analyzed

by 31P NMR spectroscopy and compared to an authentic standard. Several

phosphonates with chemical shifts in the range 17–27 ppm were detected;
28–37, January 29, 2010 ª2010 Elsevier Ltd All rights reserved 35
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fractions eluted from the column with 90–100 ml of water (B7-8) contained

a major phosphonate with a chemical shift of 20.7 ppm. The NMR sample of

B7-8 was supplemented with 8 mM rhizocticin B and reanalyzed by 31P

NMR spectroscopy. Sample B7-8 was analyzed by LC-MS as described for

rhizocticin B analysis (Supplemental Information), and its retention time and

fragmentation pattern were consistent with the presence of rhizocticin B

(Figure 3B).

RhiG Activity Assays

A stock of 100 mM oxaloacetic acid was freshly prepared in 100 mM sodium

cacodylate buffer (pH 7.5). It was added to the PnAA sample (Supplemental

Information) to a final OAA concentration of 12 mM. The reaction was initiated

by the addition of RhiG-C-His (45 mM, see the Supplemental Information for the

details of the protein purification) and the assay mixture was incubated at 30�C

for 1 hr. A precipitate that formed during incubation was removed by centrifu-

gation, and soluble proteins were removed by filtration through a Microcon

YM-30 unit. We found that adding OAA and RhiG without prior removal of

RhiH-N-His and Ppd-Bf-His, or even simultaneously with PnAA formation,

reduced the amount of the PnAA degradation product formed. Therefore,

the samples intended for extensive NMR characterization were prepared in

this manner to reduce the processing time. The Microcon units were sequen-

tially rinsed with 0.1 M sodium hydroxide, water, and finally reaction buffer

prior to use to eliminate trace amounts of glycerol because it produced 1H

NMR signals in the region of interest. The enzymatic preparation of 13C-labeled

compounds and the spectroscopic characterization of compounds Ia, Ib,

Ia0,Ia00 and Ib0 are described in the Supplemental Information.

ACCESSION NUMBER

The sequence of the insert in fosmid 2-11E containing rhizocticin biosynthetic

gene cluster has been deposited in GenBank under accession number

FJ935779.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures, two tables, and Experimental

Procedures. It can be found with this article online at doi:10.1016/

j.chembiol.2009.11.017.
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